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Abstract

Importance sampling is a variance reduction technique for efficient
estimation of rare-event probabilities by Monte Carlo. For random
variables with heavy tails there is little consensus on how to choose
the change of measure used in importance sampling. In this paper we
study dynamic importance sampling schemes for sums of independent
and identically distributed random variables with regularly varying
tails. The number of summands can be random but must be indepen-
dent of the summands. For estimating the probability that the sum
exceeds a given threshold, we explicitly identify a class of dynamic im-
portance sampling algorithms with bounded relative errors. In fact,
these schemes are nearly asymptotically optimal in the sense that the
second moment of the corresponding importance sampling estimator
can be made as close as desired to the minimal possible value.

1 Introduction

Suppose one wishes to estimate the quantity pb = P (Sn > b), where Sn =
X1 + · · · + Xn and the Xi’s are real-valued, independent and identically
distributed (iid). A simple and often effective means is to use Monte Carlo
simulation. One generates K iid replicas {Sk

n} of the random variable Sn,
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and forms the estimate ZK
.= (

∑K
k=1 I{Sk

n>b})/K. The rate of convergence
of ZK is determined by its variance:

var(ZK) = (pb − p2
b)/K.

Note that pb → 0 as b → ∞ implies var(ZK) → 0 as b → ∞. However, when
estimating small probabilities a more important statistic is the relative error
of the estimate:

RE(ZK) .=
standard deviation of ZK

mean of Zk
=

1√
K

·
√

1 − pb

pb
.

Hence for bounded relative error it is necessary that K grows as fast as
1/pb, and because of this standard Monte Carlo simulation is rarely used to
estimate rare event probabilities.

An alternative approach to the problem of estimating small probabil-
ities is importance sampling, where instead of sampling from the original
distribution samples are drawn from a new distribution under which the
rare events are no longer rare. More specifically, iid samples of the ran-
dom variable I{S̃n>b} are drawn, where S̃n = X̃1 + · · ·+ X̃n and the vector
(X̃1, . . . , X̃n) has an alternative distribution, say νb

n. The corresponding
importance sampling estimator is just the sample average of iid copies of

p̂b
.= I{S̃n>b}

dµ

dνb
n

(X̃1, . . . , X̃n),

where µ denotes the distribution of (X1, . . . , Xn). Clearly this estimator is
unbiased. The goal of importance sampling is to choose νb

n so as to minimize
the variance, or equivalently, the second moment of p̂b:

E
[
p̂2

b

]
= E

[
I{Sn>b}

dµ

dνb
n

(X1, . . . , Xn)
]

.

It turns out that solving for the unconstrained minimization problem
over all possible distributions requires knowing pb. Instead, one typically
searches within a parametric family of changes of measure and looks for a
distribution that satisfies an optimality criterion. Jensen’s inequality implies

E
[
p̂2

b

]
≥ (E [p̂b])2 = p2

b ,

thus giving a lower bound on the second moment. A change of measure νb
n

is said to be asymptotically optimal, or have asymptotically optimal relative
error, if

lim
b→∞

E
[
p̂2

b

]

p2
b

=
E

[
I{Sn>b}dµ/dνb

n(X1, . . . , Xn)
]

p2
b

= 1. (1.1)
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One would like to construct schemes whose asymptotic relative error is close
to or equal to this minimal value 1.

In [6, 7] it was shown that ideas from stochastic control and game theory
can be used effectively in the design of importance sampling schemes for
random variables with finite moment generating functions. This paper is
concerned with sums of non-negative random variables with heavy tailed
distributions (by which we mean E[exp(tXi)] = ∞ for all t > 0). For this
setup, there was no general theory for choosing sampling distributions νb

n

that satisfy this asymptotic optimality criterion, or even distributions that
have uniformly (in b) bounded relative error. A goal of the current paper
is to demonstrate that the techniques of control theory can again serve as
basic tools in the design and analysis of asymptotically optimal importance
sampling schemes for heavy tailed distributions.

The paper is organized as follows. Section 2 introduces a parametric
family of alternative sampling distributions (i.e., controls) νb

n. In Section
3, we use weak convergence arguments to show that, when the number of
summands is fixed, such changes of measure induce estimators with bounded
relative errors. Moreover, one can always identify nearly asymptotically
optimal schemes in the sense that the corresponding importance sampling
estimators come within an (arbitrarily) prescribed error of the absolute lower
bound 1 in (1.1). In Section 4 we adapt this construction to estimate

ρb = P (X1 + · · ·+ XN > b)

when N is a random variable that is independent of {Xi, i ∈ N} and satis-
fies E[zN ] < ∞ for some z > 1. For this case we are also able to identify
importance sampling schemes that are nearly asymptotically optimal. Sec-
tion 5 presents a collection of numerical results. We compare our scheme
with two existing simulation methods, one of which is based on conditional
Monte Carlo rather than importance sampling [1], and the other is based on
delayed hazard rate twisting [9]. It is worth mentioning that the conditional
Monte Carlo algorithm produces estimates that have bounded relative er-
rors, although it is not known whether they satisfy the asymptotic optimality
criterion.

2 Problem setup

Consider a sequence of iid non-negative random variables {Xi, i ∈ N} with
tail probability F̄ (x) .= P (Xi > x). Let Sn

.= X1 + · · ·+ Xn. Assume that,
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for some α > 0, the function F̄ satisfies

lim
b→∞

F̄ (ab)
F̄ (b)

= a−α for all a > 0. (2.1)

A random variable with this property is said to have regularly varying tails.
It is well known that such random variables are subexponential [1, page 253,
Proposition 1.4] in the sense that

lim
b→∞

P (Sn > b)
P (X1 > b)

= n (2.2)

for every n ∈ N. An in-depth account of heavy-tailed distributions can be
found in [8].

We wish to estimate P (SN > b) when b is a large positive number and
N is an N-valued random variable independent of {Xi}. In preparation, we
first study the special case where N ≡ n is a fixed number. As discussed in
the Introduction, the samples are drawn from an alternative distribution νb

n.
Our goal is to find, for each ε > 0, measures νb

n (we omit the ε-dependence
in the notation) such that

lim
b→∞

E[I{Sn>b}dµ/dνb
n(X1, . . . , Xn)]

P (Sn > b)2
≤ 1 + ε. (2.3)

When ε is small, the importance sampling scheme based on νb
n achieves a

nearly asymptotic optimal relative error [compare with (1.1)]. Using the
subexponential property (2.2), (2.3) reduces to

lim
b→∞

E[I{Sn>b}dµ/dνb
n(X1, . . . , Xn)]

F̄ (b)2
≤ (1 + ε)n2. (2.4)

The algorithm for this special case can then be adapted to case where
N is random. This extension will be discussed in Section 4.

Remark 2.1 We will assume throughout that the random variable Xi has
a density f . This condition is not essential and is imposed simply for con-
venience of exposition.

2.1 A parameterized family of sampling distributions

In the setting of light-tailed random variables (i.e., those with finite moment
generating functions in a neighborhood of the origin), it is customary to
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consider sampling distributions that belong to the class of “exponential tilts”
and/or their mixtures, and indeed one can obtain very good results by doing
so.

However, the situation is less clear for random variables with regu-
larly varying tails. A contribution of the present paper is the identifica-
tion of a class of sampling distributions that can yield asymptotically op-
timal performance and are simple to implement. The main requirement is
that one should be able to sample from the tail distribution with density
f(y)I{y>c}/F̄ (c) for all c ≥ 0.

Fix n ∈ N. Each distribution in our class will be determined by parame-
ters (a, pi,n, qi,n), where a ∈ (0, 1) and {pi,n, qi,n, 1 ≤ i ≤ n−1} is a sequence
of non-negative numbers such that pi,n + qi,n = 1 and qi,n > 0 for every i. It
is easiest to describe the distribution of interest as that induced by random
variables (Y1,n, Y2,n, . . . , Yn,n). Here Y1,n has the density

f b
1,n(y) = p1,nf(y) + q1,n

f(y)
F̄ (ab)

I{y>ab}.

For 1 < i < n the conditional density of Yi,n, given Si−1,n
.= Y1,n + · · · +

Yi−1,n = si−1 ≤ b, is

f b
i,n(y) = pi,nf(y) + qi,n

f(y)
F̄ (a(b− si−1))

I{y>a(b−si−1)},

and f b
i,n = f if si−1 > b. Lastly, if sn−1 ≤ b then Yn,n has conditional density

f b
n,n(y) =

f(y)
F̄ (b− sn−1)

I{y>b−sn−1},

and otherwise the conditional density of Yn,n is f .
Note that it is not difficult to simulate from this distribution. When

drawing the sample Yi,n, if Si−1,n = si−1 ≤ b then one first flips a coin that
is heads with probability pi,n. If heads comes up then we sample from the
original distribution. Otherwise we sample from the original distribution
conditioned on the event that the outcome is greater than a(b − si−1). If
si−1 > b then of course we sample from the original distribution.

Remark 2.2 If si−1 < b, then (b − si−1) is the residual distance to go
before the sample sum exceeds the threshold b. The role of the parameter
a ∈ (0, 1) is to determine how close we will come to jumping all the required
distance when the coin turns up tails (except for i = n). Since a < 1 we
do not attempt to jump over the threshold w.p.1, but rather with positive
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probability we come close to but not over the threshold. It will turn out that
the asymptotic performance (as b ↑ ∞) depends on a, and that as a ↑ 1 this
asymptotic performance approaches optimality. Hence it is tempting to use
a = 1 in the prelimit also. However, it turns out that the limits a ↑ 1 and
b ↑ ∞ do not permute. As a consequence, the corresponding importance
sampling scheme does not even achieve good asymptotic performance if one
sets a = 1 in the prelimit.

3 Near asymptotic optimality for fixed n

In this section we analyze, via weak convergence methods, the asymptotic
performance of the parametric family of changes of measure defined in Sec-
tion 2. For each fixed choice of the parameters (α, pi,n, qi,n) [i.e., controls],
we obtain a cost. Thus finding a good change of measure amounts to solv-
ing a deterministic, discrete time control problem. Nearly optimal controls
are identified, which in turn yield asymptotically nearly optimal changes of
measure for the importance sampling problem.

3.1 A weak convergence analysis

Proposition 3.1 Fix n ∈ N. Let νb
n be the importance sampling distribu-

tions defined in Section 2 with parameters (α, pi,n, qi,n). Then

lim
b→∞

E[I{Sn>b}dµ/dνb
n(X1, . . . , Xn)]

F̄ (b)2
=

n−1∏

j=1

1
pj,n

+ a−α
n−1∑

i=1

1
qi,n

i−1∏

j=1

1
pj,n

.

The limit will be shown using weak convergence methods. After setting
up the notation, we present a few preliminary results before returning to
the proof of the proposition. To begin, we rewrite the expected value as

1
F̄ (b)2

∫

Rn
+

I{y1+···+yn>1}
dµ

dνb
n

(by)µ(bdy),

where y = (y1, . . . , yn). Define

K
.= {y ∈ Rn

+ : y1 + · · ·+ yn > 1}

and a family of measures on Rn
+ by

θb(A) .=
µ(b(A ∩ K))

F̄ (b)

6



(recall that µ is the product probability measure induced by the iid random
variables X1, . . . , Xn). Then the integral can be rewritten in the form

∫

Rn
+

1
F̄ (b)

dµ

dνb
n

(by)θb(dy).

For the rest of the proof we use the definitions Mn
.= max(X1, . . . , Xn) and

Sn
.= X1 + · · ·+ Xn.

Lemma 3.2 If (X1, . . . , Xn) are iid non-negative random variables with the
subexponential property, then

lim
b→∞

P (Mn ≤ b | Sn > b) = 0.

Proof. Observe the following result due to the inclusion-exclusion principle:

P (Mn > b) = nP (X1 > b) + C2(P (X1 > b))2 + · · ·+ Cn−1(P (X1 > b))n−1,

where C2, . . . , Cn are some constants. It follows that

lim
b→∞

P (Mn > b)
P (X1 > b)

= n.

Thanks to the subexponential property (2.2),

P (Mn ≤ b | Sn > b) = 1 − P (Mn > b | Sn > b) = 1− P (Mn > b)
P (Sn > b)

→ 0.

This completes the proof.

We can now analyze the weak convergence of θb as b → ∞. Although the
θb’s are not necessarily probability measures, there is an obvious extension
of the notion of weak convergence to non-negative measures with uniformly
bounded mass [5, page 373]. In the following θj is defined as the probability
measure on Rn

+ generated by the random vector (Y j
1 , . . . , Y j

n ), where Y j
i = 0

for i 6= j and Y j
j has density αy−α−11{y≥1}.

Lemma 3.3 θb ⇒ θ
.=

∑n
j=1 θj.

Proof. For any vector a ∈ Rn
+ \ {0} define the rectangle Ra

.= {y ∈ Rn
+ :

y1 ≤ a1, . . . , yn ≤ an}. Since these rectangles are convergence determining
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[3, Example 2.3] and limb→∞ θb(Rn
+) = n = θ(Rn

+) thanks to (2.2), it suffices
to show that

lim
b→∞

θb(Ra) = θ(Ra) (3.1)

for all those a ∈ Rn
+ such that θ(∂Ra) = 0.

To this end we first consider the case max{a1, . . . , an} ≤ 1. It is ob-
vious that θ(Ra) = 0, so we only have to prove θb(Ra) → 0. This follows
immediately from Lemma 3.2 and the subexponential property (2.2), since

θb(Ra) ≤
P (Mn ≤ b, Sn > b)

F̄ (b)
= P (Mn ≤ b | Sn > b)

P (Sn > b)
F̄ (b)

→ 0.

Next consider the case max{a1, . . . , an} > 1, and without loss of gener-
ality assume that aj > 1 for 1 ≤ j ≤ k only. We can also assume that ai > 0
for every i since θ(∂Ra) > 0 otherwise. Define

U0
.= {y1 ≤ 1, . . . , yk ≤ 1, yk+1 ≤ ak+1, . . . , yn ≤ an},

and for 1 ≤ j ≤ k

Uj
.= {y1 ≤ 1, . . . , yj−1 ≤ 1, 1 < yj ≤ aj , yj+1 ≤ aj+1, . . . , yn ≤ an}.

Clearly the Uj ’s are disjoint and Ra = U0 ∪ U1 ∪ · · · ∪ Uk . All we need to
show is that θb(Uj) → θ(Uj) for every 0 ≤ j ≤ k.

The convergence of θb(U0) → θ(U0) = 0 is already established since
U0 = Rā where ā = (1, . . . , 1, ak+1, . . . , an) and max{ā1, . . . , ān} ≤ 1. It
remains to show for the case where j ≥ 1. Using the definition of θ and the
fact that θj is supported on points where yi = 0 if i 6= j, we see that

θ(Uj) = θj(Uj) = α

∫ aj

1
y−α−1dy = 1 − a−α

j .

Since Uj ⊂ K, it follows from the definition of θb that

θb(Uj) =
1

F̄ (b)
P {(X1, . . . , Xn) ∈ bUj}

=
1

F̄ (b)
P (b < Xj ≤ ajb) ·

∏

i<j

P (Xi ≤ b) ·
∏

i>j

P (Xi ≤ aib)

=
F̄ (b)− F̄ (ajb)

F̄ (b)
·
∏

i<j

P (Xi ≤ b) ·
∏

i>j

P (Xi ≤ aib).

Since ai > 0 for every i, the regularly varying tail property implies

lim
b→∞

θb(Uj) = 1 − a−α
j = θ(Uj).

This completes the proof.
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Lemma 3.4 There exists M < ∞ such that for any b ∈ [0,∞) and any
y ∈ K,

1
F̄ (b)

dµ

dνb
n

(by) ≤ M.

Proof. For y ∈ K set s0 = 0, sj = y1 + · · ·+ yj , and define τ(y) .= min{j ≥
1 : sj > 1}. We consider the cases τ(y) = n and τ(y) < n separately.

Case 1: Assume for now that y ∈ K and τ(y) = n. Then by definition of νb
n,

1
F̄ (b)

dµ

dνb
n

(by) =
F̄ (b(1− sn−1))

F̄ (b)

n−1∏

j=1

(
1

pj,n
I{yj≤a(1−sj−1)}

+
F̄ (ab(1− sj−1))

pj,nF̄ (ab(1− sj−1)) + qj,n
I{yj>a(1−sj−1)}

)
.

Consider the decomposition K = K1 ∪ K2 where K1 = {y ∈ Rn
+ : yj ≤

a(1 − sj−1) for 1 ≤ j ≤ n − 1 and sn > 1} and K2 = K \ K1.
For y ∈ K1, it is not difficult to argue by induction that sj ≤ 1− (1−a)j

for 1 ≤ j ≤ n − 1. Therefore,

1
F̄ (b)

dµ

dνb
n

(by) =
F̄ (b(1− sn−1))

F̄ (b)

n−1∏

j=1

1
pj,n

≤ F̄ (b(1− a)n−1)
F̄ (b)

n−1∏

j=1

1
pj,n

. (3.2)

For any y ∈ K2, let J
.= {j : yj > a(1− sj−1), j = 1, . . . , n− 1}, which is

non-empty. Define j∗ to be the smallest element in J , and let

q
.= min{qj,n : 1 ≤ j ≤ n − 1}. (3.3)

Note that for all j

F̄ (ab(1− sj−1))
pj,nF̄ (ab(1− sj−1)) + qj,n

<
1

pj,n
.

Then the following bound is obtained:

1
F̄ (b)

dµ

dνb
n

(by) =
F̄ (b(1− sn−1))

F̄ (b)
·
∏

j∈J

F̄ (ab(1− sj−1))
pj,nF̄ (ab(1− sj−1)) + qj,n

·
∏

j∈Jc

1
pj,n

≤ 1
F̄ (b)

F̄ (ab(1− sj∗−1))
pj∗,nF̄ (ab(1− sj∗−1)) + qj∗,n

·
∏

j 6=j∗

1
pj,n

≤ 1
F̄ (b)

F̄ (ab(1− sj∗−1))
q

·
n−1∏

j=1

1
pj,n

.
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Since for every k ∈ {1, . . . , j∗−1} we have yk ≤ a(1−sk−1), induction yields
that sk ≤ 1−(1−a)k for all such k’s. In particular, sj∗−1 ≤ 1−(1−a)j∗−1 ≤
1 − (1 − a)n−2. Thus for every y ∈ K2

1
F̄ (b)

dµ

dνb
n

(by) ≤ F̄ (ab(1− a)n−2)
qF̄ (b)

n−1∏

j=1

1
pj,n

. (3.4)

Thanks to (3.2), (3.4), observing q ≤ 1 and min{(1 − a)n−1, a(1 −
a)n−2} ≥ a(1− a)n−1, we obtain the bound

1
F̄ (b)

dµ

dνb
n

(by) ≤ 1
q

n−1∏

j=1

1
pj,n

· F̄ (ba(1− a)n−1)
F̄ (b)

(3.5)

for every y ∈ K and τ(y) = n.

Case 2: Assume that y ∈ K and τ
.= τ(y) < n. In this case we have

1
F̄ (b)

dµ

dνb
n

(by) =
1

F̄ (b)
F̄ (ab(1− sτ−1))

pτ,nF̄ (ab(1− sτ−1)) + qτ,n

τ−1∏

j=1

(
1

pj,n
I{yj≤a(1−sj−1)}

+
F̄ (ab(1− sj−1))

pj,nF̄ (ab(1− sj−1)) + qj,n
I{yj>a(1−sj−1)}

)

≤ 1
qτ,n

F̄ (ab(1− sτ−1))
F̄ (b)

τ−1∏

j=1

(
1

pj,n
I{yj≤a(1−sj−1)}

+
F̄ (ab(1− sj−1))

pj,nF̄ (ab(1− sj−1)) + qj,n
I{yj>a(1−sj−1)}

)
.

Using the same argument in Case 1 (replace n by τ), we obtain the bound

1
F̄ (b)

dµ

dνb
n

(by) ≤ 1
qτ,n

· 1
q

τ−1∏

j=1

1
pj,n

· F̄ (ba(1− a)τ−1)
F̄ (b)

(3.6)

for y ∈ K and τ = τ(y) < n.

To summarize, since q ≤ qτ,n and pj,n ≤ 1, (3.5) and (3.6) imply that

1
F̄ (b)

dµ

dνb
n

(by) ≤ 1
q2

n−1∏

j=1

1
pj,n

· F̄ (ba(1− a)n−1)
F̄ (b)

(3.7)
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for every y ∈ K. Because F̄ is assumed to have regularly varying tails, the
right-hand-side of (3.7) is bounded from above by a constant independent
of b.

Proof of Proposition 3.1. For each 1 ≤ i ≤ n define the set Ai
.= {y ∈

Rn
+ : yk ≤ a(1 − sk−1), 1 ≤ k ≤ i − 1, si > 1}. Note that for 1 ≤ i ≤ n − 1

and for y ∈ Ai, as b tends to infinity,

1
F̄ (b)

dµ

dνb
n

(by) =
1

F̄ (b)
· F̄ (ab(1− si−1))
pi,nF̄ (ab(1− si−1)) + qi,n

i−1∏

j=1

1
pj,n

→ (a(1− si−1))−α 1
qi,n

i−1∏

j=1

1
pj,n

. (3.8)

Since 1− si−1 ≥ (1− a)i−1 in Ai the convergence is uniform for all y in Ai.
This follows from a well known theorem, which states that if F̄ is of regular
variation then

lim
x→∞

F̄ (ax)
F̄ (x)

is uniform for a in any compact subset of (0, 1] [4, page 22, Theorem 1.5.2].
Similarly note that on An we have the following uniform convergence:

1
F̄ (b)

dµ

dνb
n

(by) =
F̄ (b(1− sn−1))

F̄ (b)

n−1∏

j=1

1
pj,n

→ (1 − sn−1)−α
n−1∏

j=1

1
pj,n

. (3.9)

Let A
.=

⋃n
i=1 Ai, and g be a bounded continuous function on Rn

+ that
satisfies

g(y) .= lim
b

1
F̄ (b)

dµ

dνb
n

(by) , for every y ∈ A.

Such g always exists since the closures of Ai are disjoint.
Thanks to the uniform convergence and that θb has bounded mass, we

have
lim

b→∞

∫

A

1
F̄ (b)

dµ

dνb
n

(by)θb(dy) = lim
b→∞

∫

A
g(y)θb(dy).

Observing that θ(∂A) = 0, the weak convergence θb ⇒ θ implies that

lim
b→∞

∫

A
g(y)θb(dy) =

∫

A
g(y)θ(dy),

as well as
θb(Ac) → θ(Ac) = 0.

11



The last display, Lemma 3.4 and that supp (θb) ⊂ K, in turn yield

lim
b→∞

∫

Ac

1
F̄ (b)

dµ

dνb
n

(by)θb(dy) = 0 =
∫

Ac

g(y)θ(dy).

It follows that

lim
b→∞

∫

Rn
+

1
F̄ (b)

dµ

dνb
n

(by)θb(dy) =
∫

Rn
+

g(y)θ(dy).

Since the support of θ is those y = (y1, . . . , yn) where yj ≥ 1 for a single j

and yi = 0 for i 6= j, it is not difficult to check that, thanks to (3.8) and
(3.9),

∫

Rn
+

g(y)θ(dy) =
n−1∏

j=1

1
pj,n

+ a−α
n−1∑

i=1

1
qi,n

i−1∏

j=1

1
pj,n

.

This completes the proof.

3.2 Solution to the limit problem

In this section we argue that one can choose (a, pi,n, qi,n) appropriately so
that the corresponding change of measure νb

n attains nearly asymptotically
optimal relative error; see (2.4). We need the following result.

Lemma 3.5 Given parameters (a, pi,n, qi,n), define

J(a; pi,n, qi,n) .=
n−1∏

j=1

1
pj,n

+ a−α
n−1∑

i=1

1
qi,n

i−1∏

j=1

1
pj,n

.

Then for any fixed a ∈ (0, 1), the function J(a; ·, ·) is minimized at

p∗k,n
.=

(n − k − 1)a−α/2 + 1
(n − k)a−α/2 + 1

, q∗k,n = 1 − p∗k,n, 1 ≤ k ≤ n − 1,

with minimum
J∗(a) =

(
(n − 1)a−α/2 + 1

)2
.

Proof. We use an argument of dynamic programming type. For 1 ≤ k ≤ n,
define

Jk(a; pi,n, qi,n) .=
n−1∏

j=k

1
pj,n

+ a−α
n−1∑

i=k

1
qi,n

i−1∏

j=k

1
pj,n

,

12



and
Vk(a) .= inf

{pi,n,qi,n}
Jk(a; pi,n, qi,n).

Note that Jk is independent of those (pi,n, qi,n) where i ≤ k − 1 and that
the original problem corresponds to k = 1 (i.e, J = J1). It is not difficult to
check by definition

Jk(a; pi,n, qi,n) = a−α 1
qk,n

+
1

pk,n
Jk+1(a; pi,n, qi,n),

which in turn yield the dynamic programming equation (DPE)

Vk(a) = inf
{

a−α 1
qk,n

+
1

pk,n
Vk+1(a) : pk,n ≥ 0, qk,n > 0, pk,n + qk,n = 1

}
.

Since Vn(a) ≡ 1 by definition, one can easily use backward induction (we
omit the details) to show that

Vk(a) =
(
(n − k)a−α/2 + 1

)2
,

and that the right-hand-side of the DPE is minimized at (p∗k,n, q∗k,n). This
completes the proof.

The following corollary, which states the existence of nearly optimal
importance sampling schemes, is immediate.

Corollary 3.6 Let ε > 0 be given. Then there exists a ∈ (0, 1) such that
J∗(a) ≤ (1+ε)n2. Let (p∗i,n, q∗i,n) be the optimal weights defined as in Lemma
3.5. Then the change of measure νb

n with parameters (a, p∗i,n, q∗i,n) is nearly
asymptotically optimal in that

lim
b→∞

E[I{Sn>b}dµ/dνb
n(X1, . . . , Xn)]2

F̄ (b)2
≤ (1 + ε)n2.

4 Importance sampling for random N

In this section we address the problem of estimating

ρb
.= P (X1 + X2 + · · ·XN > b)

where N is a N-valued random variable that is independent of {Xi}. Through-
out we assume E[zN ] < ∞ for some z > 1. Let sn

.= P (N = n) and
c

.= E[N ]. Observe that {nsn/c} defines a probability measure on N.

13



Importance sampling algorithm: The scheme is parameterized by (a0, a1, K)
where a0 ∈ (0, 1), a1 ∈ (0, 1−z−1/α), and K ∈ N. Each independent sample
is constructed in the following fashion.

• Generate a random variable Ñ according to P (Ñ = n) = nsn/c.

• If Ñ = n ≤ K, then draw the random vector (X̃1, . . . , X̃n) from the
distribution νb

n with parameter (a0, p
∗
i,n, q∗i,n) where (p∗i,n, q∗i,n) are the

optimal weights defined in Lemma 3.5 with a = a0.

• If Ñ = n > K, then draw the random vector (X̃1, . . . , X̃n) from the
distribution νb

n with parameter (a1, p
∗
i,n, q∗i,n) where (p∗i,n, q∗i,n) are the

optimal weights defined in Lemma 3.5 with a = a1.

• Define
ρ̂b

.= I{X̃1+···+X̃Ñ >b}
c

Ñ

dµ

dνb
Ñ

(X̃1, . . . , X̃Ñ).

The importance sampling estimator is just the sample average of indepen-
dent copies of ρ̂b.

The following result characterizes the asymptotic performance of this
importance sampling scheme.

Theorem 4.1 Consider the importance sampling scheme with parameter
(a0, a1, K). Then

lim
b→∞

1
F̄ (b)2

E
[
ρ̂2

b

]
=

K∑

n=1

csn

n

(
(n − 1)a−α/2

0 + 1
)2

(4.1)

+
∞∑

n=K+1

csn

n

(
(n − 1)a−α/2

1 + 1
)2

.

In particular, for any ε > 0, there exist (a0, a1, K) such that

lim
b→∞

1
F̄ (b)2

E
[
ρ̂2

b

]
≤ (1 + ε)c2.

Before proceeding with the proof, let us check that this indeed describes
a nearly asymptotically optimal scheme. By Jensen’s inequality

E
[
ρ̂2

b

]
≥ (E[ρ̂b])2 = P (SN > b)2.
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Also, since the random variables Xi are subexponential and E[zN ] < ∞ for
some z > 1, [1, page 259, Lemma 2.2] asserts that

lim
b→∞

P (SN > b)
F̄ (b)

= E[N ] = c.

It follows that
lim inf
b→∞

1
F̄ (b)2

E
[
ρ̂2

b

]
≥ c2.

Hence such a scheme is indeed nearly asymptotically optimal.

Remark 4.1 As we will see, the introduction of the cutoff K and the use
of a different parameter a1 for Ñ > K are for technical reasons in order to
facilitate an interchange needed in the proof. It is not known at this time if
this setup is necessary, or if one can work with a single parameter a0 ∈ (0, 1)
and K = ∞.

Proof of Theorem 4.1. When the samples are generated according to this
scheme,

1
F̄ (b)2

E
[
ρ̂2

b

]
=

1
F̄ (b)2

E

[
I{SN >b}

c

N

dµ

dνb
N

(X1, . . . , XN)
]

=
1

F̄ (b)2

K∑

n=1

E

[
I{Sn>b}

dµ

dνb
n

(X1, . . . , Xn)
]

csn

n

+
1

F̄ (b)2

∞∑

n=K+1

E

[
I{Sn>b}

dµ

dνb
n

(X1, . . . , Xn)
]

csn

n

We next take b to ∞ in the previous display. Assume for now that the
interchange of limit and the infinite sum is valid – the justification will be
given momentarily. Then (4.1) follows immediately from Proposition 3.1
and Lemma 3.5. Since a0, a1 < 1 and

∑
n nsn = c, it is not difficult to see

that the right-hand-side of (4.1) is bounded from above by

∞∑

n=1

csn

n
n2a−α

0 +
∞∑

n=K+1

csn

n
n2a−α

1 = a−α
0 c2 + a−α

1 c

∞∑

n=K+1

nsn. (4.2)

For any ε > 0, the conclusion of the theorem follows by taking K large
enough and a0 sufficiently close to 1.
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It remains to justify the interchange of limit with the infinite sum. This
will be done by finding a dominating function for

1
F̄ (b)2

E

[
I{Sn>b}

dµ

dνb
n

(X1, . . . , Xn)
]

csn

n

when n > K. Recall that in this case νb
n is defined with parameter (a1, p

∗
i,n, q∗i,n)

where (p∗i,n, q∗i,n) are the optimal weights given by Lemma 3.5 with a = a1.
By inequality (3.7) we have,

1
F̄ (b)

dµ

dνb
n

(x) ≤ 1
q2

n−1∏

j=1

1
p∗j,n

· F̄ (ba1(1− a1)n−1)
F̄ (b)

on the set {x ∈ Rn
+ : x1 + · · ·+ xn > b}, where q [defined in (3.3)] is

q
.= min{q∗j,n} = min{1− p∗j,n} =

a
−α/2
1

(n − 1)a−α/2
1 + 1

< 1.

Using this and the particular form of the weights p∗j,n from Lemma 3.5,

1
F̄ (b)

dµ

dνb
n

(x) ≤ F̄ (ba1(1− a1)n−1)
F̄ (b)

(
(n − 1)a−α/2

1 + 1
)3

aα
1 ,

which in turn implies

1
F̄ (b)2

E

[
I{Sn>b}

dµ

dνb
n

(X1, . . . , Xn)
]

(4.3)

≤ F̄ (ba1(1− a1)n−1)
F̄ (b)

P (Sn ≥ b)
F̄ (b)

(
(n − 1)a−α/2

1 + 1
)3

aα
1 .

A well known result from the theory of subexponential distributions (see,
e.g., [1, page 255, Lemma 1.8]) states that for all γ > 0 there is K(γ) such
that the following bound holds for all b ≥ 0:

P (Sn ≥ b)
F̄ (b)

≤ K(γ)(1 + γ)n. (4.4)

Another result [4, page 25, Theorem 1.5.6] states the following: for any δ > 0
there exists A(δ) > 1 such that for all 0 ≤ y ≤ x,

F̄ (y)
F̄ (x)

≤ A(δ)
(

x

y

)δ+α

. (4.5)
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Now choose γ, δ > 0 so that

1 + γ

(1− a1)α+δ
< z.

Such γ and δ always exists, thanks to the assumption that 0 < a1 < 1 −
z−1/α. We now apply the bounds in equations (4.4) and (4.5) to inequality
(4.3). Observing that sn ≤ Cz−n for some constant C since E[zN ] < ∞, it
is not difficult to show that there is a finite constant C̄ such that

1
F̄ (b)2

E

[
I{Sn>b}

dµ

dνb
n

(X1, . . . , Xn)
]

csn

n
≤ C̄n2βn,

where β
.= (1 + γ) (1 − a1)

−(α+δ) /z < 1. The right-hand-side then serves as
a summable dominating function.

5 Numerical Results

In this section we present some numerical results for the estimation of

ρb
.= P (X1 + · · ·+ XN > b),

where the Xi’s are iid random variables with regularly varying tails. The
simulation results from the algorithms outlined in this paper are denoted by
DIS (for dynamic importance sampling). For comparison, we also include
results from the weighted delayed hazard twisting algorithm of [9], denoted
by WDHT, and the conditional Monte Carlo algorithm from the report [2],
marked as CMC.

In all the tables, N is a random variable independent of {Xi} with distri-
bution P (N = n) = ρ(1−ρ)n−1 for n ≥ 1. In Tables 1 and 2, we assume Xi

has tail distribution P (Xi > b) = (1+b)−α for various values of α, while Ta-
ble 5 uses tail distribution of form P (Xi > b) = (1+b/2)−2.15 log(2+b)/ log2.

For the WDHT algorithm we use the parameters used in the paper [9].
For our algorithm (described in Section 4), we must choose (a0, a1, K). For
a given ε > 0, we set

a0 =
(
1 +

ε

2

)−1/α
, a1 =

1 − (1− ρ)1/α

2

and

K = bmax{−δ logA, 2δ2} + 1c, where δ =
−1

log
√

1 − ρ
and A =

εaα
1

2(1 + ρ)
.
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Note that under this choice of (a0, a1, K), the conditions of Theorem 4.1
are satisfied and the right-hand-side of (4.1) is bounded from above by
(1 + ε)E[N ]2 (see the Appendix), so that the scheme is nearly asymptot-
ically optimal. This is not the only choice that has such properties. The
performance, however, does not vary much when using other choices.

It has been shown that the WDHT algorithm is logarithmically asymp-
totically optimal (which means that the log of the second moment divided
by the log of the probability of interest converges to 2 as b → ∞), and
that the CMC algorithm has bounded relative error (though not necessarily
nearly asymptotically optimal relative error). The numerical results show
that our algorithm has the best performance for all the parameter values
considered, with the standard error better than that in the CMC algorithm
by at least a factor of 10.

Remark 5.1 It is not standard in the literature on this topic to report
simulation results for deterministic N . However, we did test such prob-
lems, and in some cases found that the performance of our algorithm and
CMC was similar. We conjecture that for these cases the CMC algorithm
is actually nearly asymptotically optimal, even though there is no proof to
support this conjecture. In all cases that we tested where N was random
the two algorithms were not comparable, with differences similar to those
in the presented examples, and thus for random N it seems that the CMC
algorithm is not nearly asymptotically optimal. In all cases, both algorithms
out-performed the WDHT algorithm.

Appendix

In this appendix we show that for the choice of (a0, a1, K) defined in Section
5, the right-hand-side of (4.1) is bounded from above by (1+ ε)E[N ]2. Note
that (4.2) gives an upper bound for the right-hand-side of (4.1). It suffices
to show that for this choice of (a0, a1, K),

a−α
0 c2 + a−α

1 c

∞∑

n=K+1

nsn ≤ (1 + ε)c2,

which is itself implied by

∞∑

n=K+1

nsn/c ≤ εaα
1

2
.
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Since sn = P (N = n) = ρ(1− ρ)n−1, c = E[N ] = 1/ρ, we need to show

∞∑

n=K+1

nρ2(1− ρ)n−1 ≤ εaα
1

2
.

But simple algebra yields

∞∑

n=K+1

nρ2(1 − ρ)n−1 = (Kρ + 1)(1− ρ)K ≤ K(ρ + 1)(1− ρ)K,

whence it remains to show

K(1− ρ)K ≤ A.

To this end, observing that K ≥ 2δ2 and using inequality ex ≥ x2/2, we
have

eK/δ ≥ (K/δ)2/2 ≥ K.

Therefore

K(1− ρ)K ≤ eK/δ(1− ρ)K =
[
e1/δ(1 − ρ)

]K
= (e−1/δ)K .

This completes the proof since K ≥ −δ logA.
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ρ b True Value DIS WDHT CMC
0.25 1e + 06 0.004 0.003997 0.004018 0.003954 Estimate

2.037e− 06 0.0001703 2.427e− 05 Std. Error
[0.003993, 0.004001] [0.003678, 0.004359] [0.003906, 0.004003] Confid. Interval

1e + 12 4e − 06 3.997e− 06 4.253e− 06 4.016e− 06
1.879e− 09 2.902e− 07 2.44e − 08

[3.994e− 06, 4.001e− 06] [3.673e− 06, 4.833e− 06] [3.967e− 06, 4.064e− 06]
1e + 18 4e − 09 3.999e− 09 3.748e− 09 4.041e− 09

1.804e− 12 3.549e− 10 2.469e− 11
[3.995e− 09, 4.002e− 09] [3.038e− 09, 4.458e− 09] [3.992e− 09, 4.091e− 09]

0.5 1e + 06 0.002 0.002001 0.001948 0.00199
6.507e− 07 7.946e− 05 1.002e− 05

[0.001999, 0.002002] [0.001789, 0.002107] [0.00197, 0.00201]
1e + 12 2e − 06 2e − 06 1.941e− 06 1.993e− 06

6.897e− 10 1.256e− 07 9.876e− 09
[1.999e− 06, 2.002e− 06] [1.69e− 06, 2.192e− 06] [1.973e− 06, 2.012e− 06]

1e + 18 2e − 09 2e − 09 1.887e− 09 1.999e− 09
7.041e− 13 1.644e− 10 9.888e− 12

[1.999e− 09, 2.001e− 09] [1.558e− 09, 2.216e− 09] [1.98e− 09, 2.019e− 09]
0.75 1e + 06 0.001333 0.001333 0.001372 0.001335

3.643e− 07 4.821e− 05 4.698e− 06
[0.001332, 0.001334] [0.001275, 0.001468] [0.001326, 0.001345]

1e + 12 1.33e− 06 1.333e− 06 1.332e− 06 1.343e− 06
3.272e− 10 7.492e− 08 4.796e− 09

[1.333e− 06, 1.334e− 06] [1.182e− 06, 1.481e− 06] [1.334e− 06, 1.353e− 06]
1e + 18 1.33e− 09 1.334e− 09 1.517e− 09 1.334e− 09

3.061e− 13 1.085e− 10 4.681e− 12
[1.333e− 09, 1.334e− 09] [1.3e− 09, 1.734e− 09] [1.325e− 09, 1.344e− 09]

Table 1. Estimates for P (X1 + · · ·+ XN > b) where P (N = n) = ρ(1 − ρ)n−1 and P (Xi > b) = (1 + b)−1/2. All the results
use 20,000 iterations. The true value is obtained by running our algorithm and the CMC algorithm for 500,000 iterations.
The tolerance for our algorithm is set to ε = 0.01.
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ρ b True Value DIS WDHT CMC
0.25 1000 0.0001286 0.0001279 0.0001297 0.0001289 Estimate

9.87e− 08 7.482e− 06 8.049e− 07 Std. Error
[0.0001277, 0.0001281] [0.0001148, 0.0001447] [0.0001273, 0.0001305] Confid. Interval

1e + 05 1.266e− 07 1.266e− 07 1.407e− 07 1.255e− 07
5.337e− 11 1.092e− 08 7.671e− 10

[1.264e− 07, 1.267e− 07] [1.189e− 07, 1.626e− 07] [1.239e− 07, 1.27e− 07]
1e + 08 4e − 12 4.003e− 12 3.938e− 12 3.995e− 12

1.527e− 15 4.288e− 13 2.443e− 14
[4e− 12, 4.006e− 12] [3.081e− 12, 4.796e− 12] [3.946e− 12, 4.043e− 12]

0.5 1000 6.352e− 05 6.341e− 05 6.286e− 05 6.35e− 05
1.84e− 08 3.429e− 06 3.206e− 07

[6.337e− 05, 6.345e− 05] [5.601e− 05, 6.972e− 05] [6.285e− 05, 6.414e− 05]
1e + 05 6.329e− 08 6.324e− 08 5.864e− 08 6.352e− 08

2.26e− 11 4.629e− 09 3.199e− 10
[6.32e− 08, 6.329e− 08] [4.938e− 08, 6.79e− 08] [6.288e− 08, 6.416e− 08]

1e + 08 2e − 12 2.001e− 12 1.745e− 12 2.005e− 12
6.098e− 16 1.864e− 13 1.002e− 14

[2e− 12, 2.002e− 12] [1.372e− 12, 2.118e− 12] [1.985e− 12, 2.025e− 12]
0.75 1000 4.218e− 05 4.217e− 05 4.02e− 05 4.231e− 05

7.219e− 09 1.981e− 06 1.506e− 07
[4.215e− 05, 4.218e− 05] [3.624e− 05, 4.416e− 05] [4.201e− 05, 4.261e− 05]

1e + 05 4.218e− 08 4.217e− 08 4.154e− 08 4.207e− 08
9.719e− 12 2.674e− 09 1.479e− 10

[4.215e− 08, 4.219e− 08] [3.619e− 08, 4.689e− 08] [4.177e− 08, 4.236e− 08]
1e + 08 1.33e− 12 1.334e− 12 1.376e− 12 1.333e− 12

3.061e− 16 1.134e− 13 4.69e− 15
[1.333e− 12, 1.334e− 12] [1.149e− 12, 1.603e− 12] [1.324e− 12, 1.343e− 12]

Table 2. Estimates for P (X1 + · · ·+ XN > b) where P (N = n) = ρ(1 − ρ)n−1 and P (Xi > b) = (1 + b)−3/2. All the results
use 20,000 iterations. The true value is obtained by running our algorithm and the CMC algorithm for 500,000 iterations.
The tolerance for our algorithm is set to ε = 0.01.
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ρ b True Value DIS CMC
0.25 1e + 04 5.951e− 07 5.939e− 07 5.935e− 07 Estimate

2.756e− 11 3.665e− 09 Std. Error
[5.939e− 07, 5.94e− 07] [5.862e− 07, 6.009e− 07] Confid. Interval

1e + 07 3.678e− 13 3.68e− 13 3.684e− 13
4.075e− 17 2.261e− 15

[3.679e− 13, 3.681e− 13] [3.639e− 13, 3.729e− 13]
1e + 09 2.371e− 17 2.371e− 17 2.359e− 17

3.749e− 21 1.449e− 19
[2.37e− 17, 2.371e− 17] [2.33e− 17, 2.388e− 17]

0.5 1e + 04 2.965e− 07 2.964e− 07 2.99e− 07
1.739e− 11 1.505e− 09

[2.964e− 07, 2.965e− 07] [2.96e− 07, 3.02e− 07]
1e + 07 1.84e− 13 1.84e− 13 1.83e− 13

1.84e− 17 9.116e− 16
[1.839e− 13, 1.84e− 13] [1.812e− 13, 1.849e− 13]

1e + 09 1.186e− 17 1.185e− 17 1.19e− 17
1.186e− 21 5.899e− 20

[1.185e− 17, 1.186e− 17] [1.178e− 17, 1.201e− 17]
0.75 1e + 04 1.976e− 07 1.975e− 07 1.974e− 07

5.908e− 12 7.05e− 10
[1.975e− 07, 1.975e− 07] [1.96e− 07, 1.988e− 07]

1e + 07 1.227e− 13 1.227e− 13 1.226e− 13
6.134e− 18 4.315e− 16

[1.226e− 13, 1.227e− 13] [1.217e− 13, 1.235e− 13]
1e + 09 7.9e− 18 7.903e− 18 7.938e− 18

3.953e− 22 2.81e− 20
[7.903e− 18, 7.904e− 18] [7.881e− 18, 7.994e− 18]

Table 3. Estimates for P (X1+ · · ·+XN > b) where P (N = n) = ρ(1−ρ)n−1 and P (Xi > b) = (1+b/2)−2.15 log(2+b)/ log 2.
All the results use 20,000 iterations. The true value is obtained by running our algorithm and the CMC algorithm for 500,000
iterations. The tolerance for our algorithm is set to ε = 0.01.
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